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Robust quantum valley Hall effect for vortices in an
interacting bosonic quantum fluid
O. Bleu1, G. Malpuech1 & D. D. Solnyshkov1

Topologically protected pseudospin transport, analogous to the quantum spin Hall effect,

cannot be strictly implemented for photons and in general bosons because of the lack of

symmetry-protected pseudospins. Here we show that the required protection can be pro-

vided by the real-space topological excitation of an interacting quantum fluid: a quantum

vortex. We consider a Bose-Einstein condensate at the Γ point of the Brillouin zone of a

quantum valley Hall system based on two staggered honeycomb lattices. We demonstrate

the existence of a coupling between the vortex winding and the valley of the bulk Bloch band.

This leads to chiral vortex propagation on each side of the zigzag interface between two

regions of inverted staggering. The topological protection provided by the vortex winding

prevents valley pseudospin mixing and resonant backscattering, allowing a truly topologically

protected valley pseudospin transport.
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Topological defects are a distinctive feature of quantum
fluids1. Such real space excitations are stable and cannot be
removed by a continuous transformation, which is called

topological protection. They are known for more than fifty years
and determine the fluid properties, for example, in the
Berezinskii–Kosterlitz–Thouless phase transition in Bose-Einstein
Condensates (BECs)2.

Since the eighties, the concept of topology has been applied to
reciprocal space. The topology of Landau levels3,4 and more
generally of Bloch bands5 has been shown to determine the
spectacular properties of topological insulators. In this case, the
single-particle energy bands of the system are described by
topological invariants4 (such as the Chern number). The field
expanded even further with the discovery of the quantum spin
Hall effect and of the associated class of Z2 topological insula-
tors6. Indeed, if one considers spinor particles in a lattice (elec-
trons for instance), the parity of the Chern number computed
using only one spin component is a topological invariant for a
Hamiltonian verifying Time-Reversal Symmetry (TRS)7.In that
case the bulk-boundary correspondence applies and guarantees
on the interface with a trivial insulator the presence of a pair of
counter-propagating spin-polarized states, which because of TRS
do not couple with each other.

This triumph of topology was followed by the attempts to
extend the concept of topologically protected spin transport to
other types of two-level systems which can be mapped to a
pseudospin representing either an internal degree of freedom
(photon polarization) or an external one (angular momentum,
valley8, etc.). However, for photons, TRS acts differently from
fermions9 and rigorously, there is no symmetry-protected pho-
tonic quantum spin Hall effect. This can be clearly visualized by
explicitly considering the photonic spin-orbit coupling due to the
energy splitting between TE (transverse-electric) and TM
(transverse-magnetic) modes10,11. It respects TRS, but it has a
double winding which couples counter-propagating spin-polar-
ized photonic modes. The realization of topological spin transport
for light therefore requires to fabricate a structure where the TE-
TM splitting is weak, which is possible but very demanding12,13.
Other degrees of freedom, like the angular momentum of photons
in lattices of ring cavities have been considered14,15, with the
formal problem that no specific symmetry protects this pseu-
dospin from disorder. Finally, the quantum valley Hall (QVH)
effect in staggered honeycomb lattices uses the valley
pseudospin8,16,17 to which one can associate valley Chern num-
bers18. QVH has been evidenced experimentally in electronic
systems19 and recently considered in a large series of works in
topological photonics20–25. In these systems the dissipation
mechanism is the inter-valley scattering26. Even if it is argued to
be weak, any defect localized on the interface induces a back-
scattering of the edge modes27 (see also Supplementary Movie 1).
It formally limits the meaning of the valley Chern number as a
topological index, and leads to the Anderson localization of the
1D edge states.

Recently, the topology of quantum fluids in real space and of
the band in the reciprocal space have been fruitfully combined in
the field of topological superconductors and superfluids6,28.The
collective excitations are split off by the superconducting gap,
which is topologically non-trivial for specific pairing, creating
topological edge states. A vortex necessarily contains such edge
states, which can be Majorana fermions29 protected by the
particle-hole symmetry. Many other solitonic30–35 and vortex36

solutions were found in non-trivial topologies, but for BEC sys-
tems, the chiral behavior has been mostly discussed for weak
Bogoliubov excitations37–42.

In this work, we propose an original combination of real and
reciprocal space topologies, creating a truly protected pseudospin

current in a bosonic system. Here, the topological phase and the
edge pseudospin currents are not protected by a symmetry of the
Hamiltonian, but by the winding number of the quantum vortices
(real space topological quantum number43). We consider a BEC
at the Γ point of the Brillouin zone of a QVH system based on
two staggered honeycomb lattices. We demonstrate the existence
of a coupling between the vortex winding and the valley of the
bulk Bloch band. This coupling leads to chiral vortex propagation
on each side of an interface between two regions with inverted
staggering, with a true topological protection against back-
scattering, contrary to the interface states of the non-interacting
Hamiltonian. This configuration can be seen as a quantum spin
Hall effect analog, but where the role of spin is played by the
winding of the vortices. Our results apply to polariton con-
densates in recently fabricated polariton honeycomb lattices44

and to atomic BECs in optical lattices45.

Results
Non-interacting QVH. We consider an interface between two
honeycomb lattices with opposite staggering, each being descri-
bed by a tight-binding (TB) Hamiltonian:

Hk ¼
Δ �Jfk

�Jf �k �Δ

� �
; fk ¼

X3
j¼1

exp �ikdϕj

� �
ð1Þ

where k is the wave vector, dϕj is the vector connecting nearest
neighbor sites, 2Δ= EB− EA is the energy difference between A
and B sites, and J is the tunneling coefficient. A non-zero Δ opens
a bandgap and implies opposite Berry curvatures in K and K′
valleys. If the gap is sufficiently small, the Berry curvature is
localized in each valley giving valley Chern numbers: CK,K′=
±1/2. The number of chiral states in each valley at the zigzag
interface is defined by the domain wall topological invariant:46

NK,K′= CK,K′(l)− CK,K′(r)= ±1 (where l and r stand for the left
and right domains). This results in the presence of one chiral state
in each valley, with opposite group velocities (QVH effect).
However, these valley states, degenerate in energy, are not sym-
metry-protected, which means that the backscattering due to
valley mixing by disorder is not forbidden for single particles.

Quantum vortices. The BEC can be described by a single-particle
wavefunction (WF) ψ (the order parameter). In the mean-field
approximation, ψ is the solution of the Gross-Pitaevskii equation
(GPE), including interparticle interactions:

i�h
∂ψ

∂t
¼ � �h2

2m
Δψ þ α ψj j2ψ þ Uψ � μψ ð2Þ

where m is the particle mass, α is the interaction constant, U is the
external potential, and μ is the chemical potential. The existence
of ψ imposes the irrotationality of this bosonic quantum fluid:
∇ × v= 0 everywhere, except zero-density points. The condensate
velocity is given by v= ℏ∇φ/m (φ= argψ). The phase winding
around the zero-density points where ψ= 0 is fixed by the single-
valuedness of ψ:

H
∇φdl ¼ 2πp, where p is the winding number.

The solutions with non-zero p are called vortices, and their
characteristic size is determined by the healing length
ξ ¼ �h=

ffiffiffiffiffiffiffiffiffiffiffiffi
2α nm

p
. We shall consider single-winding vortices (p=

±1) in staggered honeycomb lattices. Vortices with higher
winding are energetically unstable and split into single-winding
vortices2.

Winding-valley coupling. First, we shall demonstrate that the
core of a vortex with a given winding corresponds to a certain
valley (K or K′) of the single-particle dispersion of staggered
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graphene, that is, the existence of winding-valley coupling for
vortices.

Let us consider the core of a sufficiently large vortex (ξ � a,
where a is the distance between nearest neighbors), where the
density is necessarily small and the interactions can be neglected.
To minimize the on-site energy given by E= EA|ψA|2 + EB|ψB|2,
the WF is mostly localized on the sites of the A type, which have
lower energy (assuming EA < EB). In the limit of a large gap,
Δ � J , only the A-sites are populated and therefore the Bloch
function in the vicinity of the vortex center is (1, 0)T. We can
obtain the corresponding plane wave by Fourier transform of the
WF ~ψ kð Þ analytically (see Supplementary Note 1 for details). We
find that the maximum value of the WF is achieved for k= K and
k= K′, depending on the vortex winding p. Thus, both the Bloch
wave and the plane wave part of the WF in the core of a vortex of
a given winding define a state corresponding to a certain well-
defined valley of the single-particle dispersion. The winding-
valley coupling reads:

τ ¼ ps ð3Þ

where τ= ±1 is the valley number and s= sgn(Δ) is the lattice
staggering. This result is linked with the well-known optical
selection rules in Transitional Metal Dichalcogenides47 where the
phase pattern at the K point exhibits an angular momentum for
each unit cell, determining the angular momentum of photons for
a given valley. We note that if the vortex size becomes comparable
with the lattice parameter ξ ≈ a, the winding-valley coupling
becomes reduced: the vortex acquires a fraction of a different
valley. At the same time, it becomes localized on the hexagon
center and its mobility is reduced.

To confirm our analytical solution, we have performed
numerical simulations by solving the GPE beyond the TB
approximation, with an explicit honeycomb lattice potential U(r).
Without losing generality, we consider all parameters as in ref. 27

(typical for exciton-polaritons44), but considering a quasi-
conservative case. The neighbor distance is d= 2.5 μm, pillar
radius r= 1.5 μm, m= 5 × 10−5m0 (m0 is the free electron mass),
corresponding to J ≈ 0.25 meV, and αn= 0.3 meV. To find the
WF of the vortex, we have introduced a relaxation term48,
preserving zeros of the WF (Λ= 0.03) (see Methods). The results
of these calculations are shown in Fig. 1, where the black lines
show the contours of the pillars corresponding to the potential U
(r) (panels (a)–(c)), and the white dashed line shows the 1st
Brillouin zone (panels (d), (e)). To get the information on the
vortex core, we apply spatial filtering using a Gaussian of size w.
For large w, the image in the reciprocal space (Fig. 1(d)) is
dominated by the condensate centered at the ground state (Γ
point). The ground state itself is empty, because the vortex
imposes v ≠ 0 everywhere. For smaller w (Fig. 1(e, f)), the core of
the vortex is centered at the K points of the reciprocal space, while
the K′ valleys are empty. Opposite results are obtained for
opposite winding, confirming the valley-winding coupling for
vortices.

Vortex at the interface. We have shown that the vortex WF in
the reciprocal space has two contributions. Most of the condensed
particles, far from the vortex core, are concentrated around the Γ
point (small k). These particles are practically unaffected neither
by the presence of the lattice, nor by any possible interfaces. On
the other hand, the core of the vortex is at the K point, and we can
expect interesting effects linked with the interfaces, where in the
linear regime the states from the bulk K points give rise to chiral
propagative interface states (QVH states).

We calculate analytically the energy of the vortex as a function
of both the wavevector of the core (dispersion) and of its position
in real space, using the TB approximation and the grand
canonical expression:2

Ev ¼
Z

�h2

2m
∇ψj j2þ α

2
ψj j2�n

� �2� �
dR ð4Þ

Qualitatively, this expression is the difference between the
energy of a system with a vortex and the energy of a system
without a vortex (but with a condensate in the ground state with
the unperturbed density n). The first step is to split the integral
into 2 regions: the core (|R| ≤ ξ) and the outside zone (|R| > ξ). In
the second region, |ψ|2 ≈ n, and the only contribution to the
vortex energy comes from the kinetic energy term, which gives
the well-known logarithmic expression Er>ξ

v ¼
πn�h2ln 1:46R0=ξð Þ=m (R0 is the system size).

In the vortex core, the presence of the lattice has to be taken
into account. As we have shown above both analytically and
numerically, the core of the vortex is a wavepacket centered at k0
close to either K or K′ (we take a Gaussian wavepacket ψG).
We calculate its energy versus k0 using the TB dispersion E(k).
The X spatial direction, perpendicular to the interface, has
to be treated in the real space (x0 is the vortex center).
The contribution to the kinetic energy is calculated as:

Ekin;r<ξ
v ðx0; k0Þ ¼

R x0þξ
x0�ξdx

R
dkψ�

Gψ
�
0Ĥψ0ψG, where ψ0(x, ky) are

the single-particle eigenstates of the lattice. These eigenstates are
quantized in the X direction. Their spatial overlap with the vortex
core plays an important role. For the delocalized bulk states the
overlap tends to zero with increase of the stripe width. On the
other hand, the state localized at the interface (width κ) has a
non-vanishing overlap and the contribution of this state
dominates the dispersion of the vortex core. An example of such
dispersion in the vicinity of the K and K′ points is shown in Fig. 2
(a,b): the dispersion of the core (blue line) inherits the dispersion
of the linear eigenstates at the interface (red dots), and therefore
their valley-dependent propagation direction (chirality), as
compared with the non-propagating bulk states with zero group
velocity exactly at K or K′ (black points).

The kinetic energy of the core also depends on the position of
its center x0: if the core is perfectly centered at the interface, the
energy at k0= K is exactly the same as that of the interface state.
On the other hand, if the core is located in the bulk, its energy is
that of the top of the valence band, determined by the energy
splitting Ekin(x0, k0)=−Δ. The interface therefore represents a
barrier of a height of the order of the gap Δ, if only the kinetic
energy is taken into account.

The contribution of the interactions to the vortex energy comes
from the sensitivity of the vortex to the local changes of the
density in the condensate. In the vortex core, the density |ψ|2 is
small as compared with the background density n(r), and the
integral reads: Eint;r<ξ

v ¼ R ξ
0αn

2πrdr. Thus, the vortices are
attracted to lower-density regions minimizing the total energy
of the system. The density of the condensate without a vortex
depends on the local potential, which affects the density of the
condensate at the scale given by the healing length ξ. Considering
the interface as a Delta barrier V0δ(x), the density of
the condensate in its presence can be found as: 49

nðxÞ ¼ n0ð1� cosh�2ððxc þ jxjÞ=ξ′ÞÞ, where xc and ξ′ depend
on V0. The interaction energy of the vortex core as a function of
x0 therefore exhibits a minimum of width ξ′ ≈ ξ.

The sum of kinetic and interaction energies depends on the
parameters of the system. Two examples of such dependence as a
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function of x0 are shown in Fig. 2(c) for ξ > κ. The vortex can be
localized on either side of the interface, the latter acting as a
barrier preventing the vortex from changing domain and valley
(the only valley scattering mechanism remaining for vortices
unless the winding-valley coupling is suppressed). Tunneling
through the interface can occur through quantum-
mechanical50,51 or thermal52 mechanisms: PQM � expð�nl2Þ
and PT � expð�Δ=σÞ (l—interface width, σ—broadening). These
tunnelings are extremely small. It is moreover possible to increase
the barrier size by inserting several zigzag chains with Δ= 0
between the two staggered lattices, thus reducing the tunneling
exponentially and making it negligible and increasing the
robustness against point-like defects (see Supplementary Note 3
for details). The green line in Fig. 2(c) shows the vortex energy for
a wide interface (4 zigzag chains). Vortex tunneling is thus
restricted by the same condition as the observation of the edge
states: σ < Δ—the broadening of all sources should be smaller
than the gap.

Discussion
Our analytical results are fully confirmed by numerical simula-
tions of vortex propagation along the interface using Eq. (2)
(no Λ). The snapshots of one of such simulations are shown in
Fig. 3 (see Supplementary Movie 2). We see that the vortex
remains attached to the interface and propagates along, without
being scattered backwards on the corners. An additional defect of
1 meV (� 4J � Δ) and 1 μm width has been added on an
interface pillar for comparison with the linear case, where it leads
to strong backscattering27. This allows us to check that the vortex
is indeed immune to backscattering thanks to the additional
topological protection provided by its winding via the winding-
valley coupling. A detailed analysis of the impact of the defect size
and interface thickness on the scattering processes is shown in
Supplementary Note 4 (see also Supplementary Movies 3-6). We
stress, however, that in contrast with electronic quantum spin
Hall insulators, where the particle number is conserved, counter-
propagating vortices can annihilate.
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The group velocity of the interface states is vg= ℏ−1∂E/∂k=
0.7 × 106 ms−1. This is the velocity with which the WPs at the
interface can be expected to propagate in this particular lattice.
Interestingly, the vortex velocity is different from vg. We stress
that it is also different from what can be calculated for the vortex
rolling effect (see Supplementary Note 2). Indeed, in our calcu-
lation we were assuming that only one type of the sites is occu-
pied for a given staggering. However, as shown in a scheme in
Fig. 4(a), the interface represents a violation of a perfect stag-
gering, and thus the higher-energy sublattice acquires a density

estimated as n′ ¼ 2n= 1þ Δþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 4J2

p� �2
=4J2

� �
. The

resulting velocity, reduced with respect to that of the linear
interface states, is given by:

v ¼ vg n� n′ð Þ=n ð5Þ

We plot the dependence of v on the pillar size ratio ΔR/R
(determining the gap size Δ) in Fig. 4(b). Red dots show the
results of numerical simulations. Black line is the analytical
solution given by Eq. (5), where vg and Δ are taken from
numerical simulations in linear regime. We see that it corre-
sponds almost perfectly to the points (exact numerical solution)
while there are no fitting parameters. This confirms the validity of
our interpretation. For a smooth interface, n′ ≈ n and the velocity
is reduced even more (see Supplementary Note 2).

Single-domain configurations with QVH edge states have been
considered for single particles in the past53. While the edge states
provide a similar dependence Ev(k0) for vortices (giving rise to
associated velocity along the edge), such configuration does not
exhibit the same localization potential in transverse direction
Ev(x0) as that shown in Fig. 2(c), and the vortex either crosses the
interface and disappears or enters the bulk (see Supplementary
Note 4, Supplementary Movies 7,8). Therefore, the abrupt
domain wall between two opposite-staggered lattices that we
consider is really an optimal configuration for vortices.

The mean-field approximation we are using neglects quantum
and thermal fluctuations, which reduce the coherence length of
the condensate. For the particular system of exciton-polaritons in

GaAs cavities at 5 K, the effect of thermal fluctuations is reduced
because of the strong decoupling from the phonon reservoir54.
The quantum fluctuations give a theoretical limit for the coher-
ence length of the order of 1 mm55, which makes the mean-field
GPE a good approximation at the scale of the lattice we consider
(100 μm). The main sources of broadening, limiting the possibi-
lities of experimental observation, are therefore the disorder and
the finite lifetime. If the broadening becomes so strong that it
closes the gap, the winding-valley coupling is suppressed. This
can be considered as a valley scattering mechanism for a vortex,
corresponding to the same restriction for chiral vortex propaga-
tion as already discussed above: σ < Δ. On the other hand, the
winding inversion for the vortex is suppressed even stronger than
its tunneling across the barrier, that is, by a factor exp(−N),
where N ~ 104 is the total number of particles in the condensate.
Such mechanism is therefore completely improbable and does not
add any restrictions to the experimental conditions.

To conclude, our work addresses the behavior of quantum
fluids in topologically non-trivial systems. It highlights a new
combination of topological effects: real space topological effect
characterized by vortex winding number and momentum space
topology characterized by the valley Chern number. We see that
the properties of the single-particle dispersion of the interface
states are inherited by the vortex solution of the non-linear
equation via the core, the vortex providing protection against
backscattering by localized disorder on the interface. We
demonstrate that this combination allows to achieve topologically
robust QVH effect. These results are promising for the develop-
ment of a new field of vortextronics, where the information will
be carried by vortices. The possibility to create chiral pathways for
vortices and to automatically sort them according to their
winding is crucial for information treatment.

Methods
Numerical simulations. We used third-order Adams-Bashforth method for the
time integration of the Gross-Pitaevskii Eq. (2), both with the relaxation term to
find the stationary vortex solution, and without the relaxation term to study the
vortex behavior. The Laplacian term was replaced by a double Fourier transform, in
order to obtain an efficient parallelization on the Graphics Processing Unit (using
nVidia Compute Unified Device Architecture—CUDA).

To find the stationary vortex wavefunction in presence of a honeycomb lattice
potential, we solve the damped Gross-Pitaevskii equation: 48

i�h
∂ψ

∂t
¼ 1� iΛð Þ � �h2

2m
Δψ þ α ψj j2ψ þ Uψ � μψ

� �
ð6Þ

where Λ= 0.03 is the dimensionless damping coefficient. This equation guarantees
that a stationary solution with an energy μ persists, whereas any perturbations to
this solution with higher energies decay, with the characteristic decay rate
proportional to the energy deviation Γ= 〈H〉− μ. We start with a wavefunction
ψ � tanhðr=r0ÞexpðipφÞ, where φ is the polar angle, p= ±1 and r0 is of the order of
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expected healing length ξ (several micrometres). The damped equation conserves
the zeroes of the wavefunction, because in the point r= 0 where ψ= 0 the right
part of the equation vanishes and thus ∂ψ/∂t= 0. The wavefunction cannot
therefore evolve towards the ground state, so it stabilizes at a stationary solution
with winding p= ±1.

The energy of the vortex (Fig. 2) was calculated from a tight-binding model for
a graphene ribbon with an interface between two opposite staggerings.

Code availability. The code used for numerical simulations based on the
Gross–Pitaevskii equation is available from the corresponding author upon rea-
sonable request.

Data availability
The data generated with the above code are available from the corresponding author
upon reasonable request.
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